DOLAR: 2.23 TL
EURO: 2.87 TL

İstatistik Z Tablosu nedir

İstatistik Z Tablosu nedir

z tablosu standart normal dağılış tablosudur z tablosu yatay ve dikey şekilde ve sistemli ve periyodik bir tablodur bu tabloda dikey olan kısım daki rakamlar x ekseni üzerindeki z yi temsil ederken yatay kısımdaki rakamlar ise z yi ifade etmektedir aşağıdaki gibi

(Y-u)/alfa simgesi=Z 00 01 02 03 04

0,0 0000 0040 0080 0120 0160

0,1 0398 0438 0478 0517 0557

0,2 0793 0832 0871 0910 0948

0,3 1179 1217 1255 1293 1331

0,4 1554 1591 1628 1664 1700

0,5 1915 1950 1985 2019 2054

mesela bu tablodaki 0,0 0,1 0,2 0,3 0,4 0,5 eksenindeki dikey sayılardaki tek haneler x ekseni üzerindeki z yi ifade eder 1. hane ama 01 02 03 04 diye giden yatay eksenli haneler ise onlarda z yi ifade eder 2. hane

Standart normal dağılım tablosu

.1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517
.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879
.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224
.6 .2257 .2291 .2224 .2357 .2389 .2422 .2454 .2486 .2517 .2549
.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852
.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133
.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389
1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621
1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319
1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441
1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767
2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817
2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952
2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986
3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990
3.1 .4990 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4993 .4993
3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995
3.3 .4995 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4997
3.4 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998

Okunuşu

0.5, .5 şeklinde yazılabilir. 0.9, .9 şeklinde yazılabilir. 0.59, .59 şeklinde yazılabilir.
Standart normal dağılıma dönüştürülen bir normal dağılımın P(Z<0.59) olduğunu varsayalım. Bunun için ilk önce mavi dikey ve mavi yatay sütunlara bakmalıyız. 0.59 bu sütunlarda .5 ve .09 noktalarının (.5 + .09 = .59) kesiştiği yerde aranır. Böylece P(Z<0.59) = .2224 tür deriz.
Standart normal dağılıma dönüştürülen bir normal dağılımın P(Z<1.24) olduğunu varsayalım. Bunun için ilk önce mavi dikey ve mavi yatay sütunlara bakmalıyız. 1.24 bu sütunlarda 1.2 ve .04 noktalarının (1.2 + .04 = 1.24) kesiştiği yerde aranır. Böylece P(Z<1.24) = .3925 tir deriz. Standart normal dağılıma dönüştürülen bir normal dağılımın P(Z>2.09) olduğunu varsayalım. Bu olasılığı tabloda arayabilmenin tek koşulu P(Z<Z0) şeklinde yazılabilmesidir. P(Z>2.09) = 1 – P(Z<2.09) şeklinde bulunur.
Standart normal dağılıma dönüştürülen bir normal dağılımın P(Z<-1.28) olduğunu varsayalım. Bu olasılığı tabloda arayabilmenin tek koşulu aranan değerin pozitif olmasıdır. P(Z<-1.28) = 1 – P(Z<1.28) şeklinde bulunur. Standart normal dağılıma dönüştürülen bir normal dağılımın P(Z>-3.04) olduğunu varsayalım. Normal dağılımın simetri özelliğinden bu dağılım P(Z<3.04) şeklinde yazılabilir.
Standart normal dağılıma dönüştürülen bir normal dağılımın P(1.65<Z<1.96) olduğunu varsayalım. Bu aralıklardaki olasılık P(Z<1.96) – P(Z<1.65) şeklinde bulunur.
Standart normal dağılıma dönüştürülen bir normal dağılımın P(-1.28<Z<1.28) olduğunu varsayalım. Bu aralıklardaki olasılık P(Z<1.28) – [ 1 - P(Z<1.28) ] = 2P(Z<1.28) – 1 şeklinde bulunur.

Sponsorlu bağlantılar
Bu Konuyu Sosyal Medyada Paylaş

Yorumlar

Henüz yorum yapılmamış.

Yorum Yaz

Yukarı Çık